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ABSTRACT

The Green's function Monte Carlo method s used to calculate the ground
state wave function of the muonic molecular ion composed of a negative muon
bound to a deuteron and a triton. Using the sudden approximation, the
probability that the muon will remain bound to the éscaping alpha particle
after fusion occurs is found to be 0.90%, about 25% smaller than previous
estimates based on the Born -Oppenheimer approximation. The numerical method

for determining the wave function is discussed 1n detail.






I. INTRODUCTION

There has been considerable interest in catalyzing fusion in
deuterium-tritium mixtures with negative muons, because recent experiments
have found that a single muon can cause about one hundred fusions
react1ons.] If the only relevant rates were those governing the formation
of the muonic ion and the decay of the muon, approximately one thousand
fusions would be catalyzed. However, for about 1% of the fusions, the muon
sticks to the outgoing alpha particle and is prevented from catalyzing further
fusions. This sticking mechanism 1imits the efficiency of the process.

Recent measurements2 of the sticking probability are about half of the

theoretical estimates based on the Born-Oppenheimer applr‘oximat'ion.?’_4 In

this paper the sticking probability is calculated without this approximation.
The sticking probability, », is defined as the probability that in the

reaction:
(dtu)* + (uHe)* + n + 17.59 Mev

the muon will remain bound to the alpha particle. We restrict the initial
state of the muonic molecule to the ground state. Because fusion occurs on a
much faster time scale than muonic-molecular motions, the sudden approximation
can be used to determine this probability, once the initial, &5, and

final, ., muonic wave functions are known at the instant of fusion,

namely at the coalescence point (taken to be the origin of the coordinate

system) where the deuteron and triton are on top of each other. Under the

sudden approximation the sticking probability is:



o = [0 8, (rac(r) . )

The final state 1s, of course, simply a neutron and a moving hydrogen-1ike
fon. ‘However, the initial state is a genuine three-body system. Let
e(ru.ra.rt) be the full three-body wave function in the coordinate

system where the center of maés is at rest. Then the initia) muonic wave
function 1is:
_ei(r!;o.o)

2
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It has been previously assumed that one can make the Born-Oppenheimer
(80) approximationa" for 0, and then 'i reduces to the ground state
wave function for a hydrogen-like ion with a helium nucleus of mass 5.
However, because the mass of the muon is not small compared the masses of the
nucl?ons. this 1s not, as we shall see, a very good approximation.
Variational calculétions of the Hylleraas-Pekeris type could5 be used to
calculate the muonic wave function. However, a variational function 1s
usually accurate only in the region where the probability density is high, not
at the coalescence point. One expects those calculations to converge
exceedingly slowly there Qith increasing number of terms in the expansion of
the wave functlion. Monte Carlo calculations do not have this 11mitat1ﬁn.

Monte Carlo calculations have been used to calculate ground state

properties for a wide yariety of quantum systems.6 They are typically most

useful when the number of degrees of freedom is too large for other methods to
handle. However, the method is quite applicable to few body problems as

well. Although the Monte Carlo scheme to calculate wave fﬁnction values has
been known for some vears, the emphasis has always been on obtaining accurate

energies. In the next section we will discuss the application of the Green's
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Function Monte Carlo (GFMC) method to this problem, and introduce an improved

method for calculating wave function values. Section III will summarize the

results for the muon-alpha sticking probability.

II. NUMERICAL METHODS
The particular form of the GFMC method applicable to Coulombic systems

has been discussed in detail in a recent paper.7 We will assume the reader

is familiar with that paper and follow its notation. The units of length used
here will be muonic radii (all = 0.256:10’1°cm). The energles will be

given either in muonic hartrees (5.6265 keV) or, when discussing binding
energies (1.e. energies relative to the unbound system (tu)+d), in electron
volts. The Hamiltonian in muonic atomic units for this system is:

- - - 2 _ 2 _ -
H = D“ v Dt vt Dd vd llrl‘d Vr"lt + llrdt . (3)

where the "diffusion constants® in these units are Du=0.5 . Dd=0.02817

and Dt=0.01881.

A. The Importance Function

Essential to an accurate solution with the Monte Carlo method is an
accurate importance function. Although the calculated expectation value of
any property is independent of this function, the statistical variance is
proportional to its error. Since we are calculating the value of the wave
function at the coalescence point the importance function must be reasonable
in that region. Since this muonic jon is very similar to a hydrogen molecule,

we use an importance function of the pair product form that was successfully

emp]oyedB for Hz;
-3-



¥ = 9gp(ge) g, (g, )90 (re) Trgdleg(rg) + gp(r )l (4

where g(a,r) = exp[-a /(a + r)—a3r] and gla,r) = exp[-all(az +r )] The
analytic values for the derivative of the wave function at the point where two
particles coalesce can be used to eliminate some of the free parameters and
insure that the 1mportance function has the proper behavior there.

(5)

dg,,(r)
L - a2 -ag -t 0.5/(0y + 0y)

gij dr o
These cusp conditions are applied to the first three factors in Eq.(4) only
and the cusp value for both 9, and g 1s assumed to be zero. The importance
function contains a sum over the two orbital functions 9gr describing the
alternating binding of the muon to the two nucleons. In principle, the
parameters in these two orbitals couid be different; but for convenience we
have kept them the same. The additional function g has been added to improve
the importance function in the coalescence region.

After taking into account the cusp conditions, there are ten free
parameters in fhe importance function. The values of these parameters are

determined by minimizing the variational energy using confﬁgurations derived

6 calculation. A very strong check on the

from a variational Monte Carlo
correctness. of the computer code is that the final answers be independent of
the importance function within the statistical errors.? Accordingly we have
used two sets of variational parameters.(denoted I and 11, their values are

given in Table I). Thé variational ehérgy for both of these trial functions
is the same, namely -0.5361:0.0002. This corresponds to a binding energy of

30521 eV which is about 14 eV above the exact ground state energy.



B. Green's Function Monte Carlo

The first step in calculating wave function values is to calculate the
ground state energy. Although this has been done previously to the needed
accuracy by both variationa15 and non-variationa]‘o methods, it is

instructive to reproduce those results by GFMC. The GFMC a]gorithm6 finds

ground state properties by applying the operator
B(RWR') = w(R) (RI TV #x (H=-E)7 R w (R (6)

many times to the initial distribution f]= |vT(R)|2.
foq(R) = JdR' G(R,R') f (R') . (7)

The convolution required in this equation is performed stochastically by using
branched random walks. Thus the distribution fn' referred to as the nth
generation, consists of an ensemble of configurations {R} and the

convolution is interpreted as sampling, conditional on those configurations, a
new ensemble of configurations from the operator (or matrix in configuration

space) G(R,R'). This can be done exactly énd an efficient method has been

developed for Coulombic systems.7

The ground state energy calculated with GFMC is -0.53861+0.00004 which
corresponds to a binding energy of 319.210.2 eV. This compares favorably

with 2 recent variational calculation5 of the Hylleraas type of 319.06 eV

10

and a nonvariational calculation' = of 319.15 eV.



C. Calculation of Relative Wave Function Values
Repeated application of the evolution operator G can also give wave
function va]ues.]] Consider the total population after n applications of

the Green's fynction to a single point, Ro. in the first generation; i.e.

define:
Pn(no) = [dR fn(R). © where f](R) = &(R-Ro) . (8)

Then using the eigenfunction expansion for 6 It is easy to show that
asymptotically:

o(R,)  JdR wy(R)(R)
""(R‘o) (" + 1 (Eo_ET))n-] ’ -

:1: Pn(no) (9)
where 0 and Eo are the grbﬁnd state eigenfunction and eigenvalue. Unless
the trial energy ET is chosen exactly equal to the ground state energy, the
population will tend to grou-br decljne asymptotfca11y depending on whether
ET is larger or smaller than éo' The uncertainty in ET does not
significantly affect the calculated wave fuﬁction valﬁes because the energy is
always calculated more accurately than wave function v&]ues. Relative wave
function values are calculated by starting off a number of systems at any
desired configuration (Ro) and finding the average number that

asymptotically result. In practice:the walks are followed a sufficient number
of generations until their distribution matches that of the ground state. To
get absolute wave function values, the normaiization constant must be
determined as discussed in the next section.

Statistical fluctuations can be reduced by an order of magnitude using

the following transformation: apply the inverse operator to G (i.e.



¢T[1+(H-ET)]/¢T) to both sides of Eq.(7) and integrate over R. Then using
Green's identity for H and defining the local energy as EL(R)= *;]H*T'ET ve

obtain:
Pn(Ro) = Pn+1(R°) + 1t JdR EL(R) fn+l (R) . (10)

Using this relation recursively we obtain:

n -1
122 [V + « (€] (1)

P(R) =
where (EL)1 is the average of the local energy over all walks which
reach the ith generation.

In GFMC, fluctuations in branching arise for two reasons, namely because
one cannot sample G perfectly and because the importance function does not
equal the ground state wave function. In practice it is found7 that the
fluctuations in branching and hence in the total population are an order of
magnitude larger than those due to the importance function alone. The above
Tocal energy estimate of the wave function, however, is only sensitive to
importance function errors, leading to a much lower variance. Figure 1
illustrates the convergence of the population and a comparison of the two
estimators for walks starting at the triple coalescence point (i.e.

9 both estimators give the

pn(rd=rt=r“t)). Within the error bars
same results but the local energy estimator error bars are five times smaller.
Table II contains the results for various values of the muon distance
from the coalescence point. .From'104 walks to 105 walks have been started
from each initial point and a generational time step of r=0.5 was used. The

wave functions values are accurate to 0.5% for rn(4 and 1.0% for larger r.

The error bars basically reflect the amount of computer time expended at

7-



each point. Importance function II has somewhat larger error bars for the
same length of run but their results agree rather well.

There are three sources of systematic errors in this calculation, all of
which are small. We have already mentioned that the ground state energy must
be known accurately. Note that the'Statistical error of 4x10™> in the trial
energy will give an error of 0.11_1n the wave function values after 50
generations, somewhat less than their statistical errors. Secondly, the local
" energy estimator for the wave function will contain some bias because the mean
value of a product is not equal to the product of the mean values. (Note that
the original population estimator does not have such a bias.) This bias 1s
however very small because of the large number of walks contributing to each
term. We can estimate this blas by dividing up fhe samplé various ways and
arrive at an estimate to the relative blas of one tenth of the statistical
error. Finally, convergeﬁce’of.the wave function values versus generation
number must be obtained. The walks are followed for 50 generations since by
then it 1s found that the average deuteron-triton distance reaches its
asymptotic value and the wave function values have stablized.

The above method of calculating wave function values has the desirable
*zero variance® property.6 By that is meant that.in the 1imit where the
importance function approaches an eigenfunction of H, the variance of the
calculated wave function values goes to zero. But independent of the
importance function the GFMC method Sluays yields the exact result within its
statistical error bars provided the run is long enough that convergence has
been obtained. There is no particular difficulty associated with computing
wave function values at the coalescence point. The local energy.fs initially

on the order of unity, but it quickly décays to zero once the two nucleons

have drifted apart.



D. Normalization

Calculation of absolute wave function values requires two additional
Monte Caric calculations. Normalization is not necessary to find the
muon-alpha sticking precbability since the initial muon state functions are
renormalized anyway (see Eq.(2)). However normalized wave functions values
are necessary in order to compare results from different importance functions,
to compute cther types of matrix elements (such as the fusion rate) and to
compare with other variational calculations.

Initially the importance function is normalized. For some simpler

importance functions this step is unnecessary. Define the constant CT by:

Ve = @i AR LRIt (12)

where we assume the molecule is confined in a (very large) box of volume Q@

ecause the center of mass is not otherwise fixed. Variational Metropolis

Honte Car105 is used to compute the average:

- 2
far v (wglud
g, = —= AT o g,/ 1D (13)
[P ¢~
wheie §y 1% the function:
o~ ~a(r - 1 (r +r ))2

B, 7 G {Tgy) Glrgdew T2 VTt (14)
s by s 1ts normalization:

= 1 jar g2 = e (w2032 | FPar g lr) Py (15)

M o 0

“are wust be taken to prove that the variance of the estimator of Eq.(13)

trists, In the presert case this is equivalent to shoewing that the function

~Q-



'AzI*T is bounded for all values of its arguments. The constants
cT and "T for the two trial functions are given in Table I.

The second step in calculating absolute wave funétions values is to
compute the overlap integral, °T' (1.e. the integral in the numerator of
£q.(9)). The calculation proceeds exactly as in section C but the initial
condition is changed; namely the first gener&tion consists of points sampled
from the square of the importance function. Then as in £q.(9), the population
asymptotically becomes:

-[IvTe]2 2
= 3= Vim P (e°) . (16)
ey e

1

Note that the overlap with the ground state (see Table I) is almost unity,
showing that our importance function overall 1s accurate. However, as we
shall see in the next section, this does not imply individua) importance
function values are accurate. Using the results of the calculation of 0T
and C, we can now normalize the wave function values. The relative error of
the normalization 1s only 0.27% so the normalized wave function values do not

have appreciably larger errors than relative wave function values.

ITI. RESULTS AND CONCLUSIONS
Figure 2 shows the exact wave function divided by the Born-Oppenheimer

value. Table II 1ists numerically the wave function values at the coalescence

point as a function of the muon distance. In general the adiabatic function

is not spread out enough.
The wave function values have been used to compute the sticking

probabilities in the various final states. The final state wave function is:
Op(r,uroury) = eP(Rerndy (Fo Ryp(r ) (17

-10-



where p is the outgoing neutron momentum, R!nylm is the Coulomb wave
function and Rc is the center of mass of the alpha-muon atom. Setting the
nuclear coordinates to zero as given in Eq.(2), averaging over the direction
of p and summing over m values we obtain the sticking probabilities in the
various final states:

ogp = (24 1) [ riOr ey(ndy(ariky, () (18)

where qa“=5.844.12 They are given in Table III. Our values are

consistently 24% lower than those from the BO function. This brings them into
much better agreement with exper1ment.2 Exact comparision to experiment is
difficult as the measurements are at a finite density and collisions with the
surrounding moliecules strips off some of the muons (estimated to be estimated
to be 30%).4

This calculation can be extended straightforwardly to the other initial
states of the mesic-molecule in a different symmetry class from the ground
state, 1.e. tc the {(J=1, vw=0) and (J=2, v=0) states, by using the methods
siveagdy developed for fermion systems.la However the fusion cross section
i these states 1s small because the centrifugal barrier inhibits fusion14
i so they are not important to the muon-catalyzed fusion process. The
exiension £o the more interesting states {J=0, v=1) and (J=1, v=1) is more
Zifficult because these states must be explicitly orthogonalized to the ground

stafe otherwise any admixture of the ground state in the importance function

#i1l eventually dominate the numerical simulation.

-11-
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TABLE I

Trial wave function parameters, variational energies, normalization and
overlap integrals for the two importance functions used. A1l lengths are in

muon radii, energies in muon hartrees.

Function I Function II

a) ay ag ay ap a3
U4t 13.37 1.063  1.194 17.90 1.220  1.3717
9t -1.15 1.202  0.166 -1.14 1.199  0.169
9y -1.28 1.256  0.135 -1.25 1.240  0.136
9, 0.83 1.016 0.813 0.83 1.011  0.814
Tat -0.0575  0.230 -0.359  0.188
€, 0.5360 + 0.0002 - -0.5362 # 0.0002
¢ 0.394 & 0.002 0.402 & 0.002
Ny 864.1 17124,
0, 0.9980 & 0.0007 0.9989 & 0.0006
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TABLE II

Normalized wave function values, o(r),at the coalescence point as a function
of the muon distance,r, computed using two different importance
functions.The numbers in parenthesis are exponents. Pso(r) is the

population after 50 generations (computed with the local energy estimator)

and re is the relative error of P50 and o.

Function I Function II
r Pso(r) re o(r) P5o(r) re o(r)
0.0 2.447 0.005 1.264(-3) 0.852 0.003 1.265(-3)
0.5 2.313 0.004  5.072(-4)
1.0 1.967 0.005 2.066(-4)
1.5 1.676 0.004 8.963(~5)
2.0 1.385 0.004 3.904( -5)
2.5 1.130 0.004 1.715(-5)
3.0 0.922 0.007 7.64 (-6)
3.5 0.758 0.004 3.46 (-6)
4.0 0.628 0.010 1.59 (--6) 0.220 0.010 1.61 (-6)
4.5 0.516 0.004 7.32 (-7)
5.0 0.425 0.010  3.38 (-7)
6.0 0.298 0.012 7.51 (-8)
7.0 0.21 0.015 1.70 (-8)
8.0 0.148 0.013 3.83 (-9) 0.0527 0.017 3.87 (-9)

-15-



TABLE III

Comparison of the Monte Carlo determined values of the muon-alpha sticking
probabilities (given in percént) to various final states and the sum over
all states, with those from the Born-Oppenheimer approximation. "Other® 1s

the sum over all states not l1isted.

state " Monte Carlo 8.0.
1s B 0.689 0.9024
2s - 0.099 : 0.1288
2p 0.024 0.032)
3s ' 0.030 . 0.0391
3p 0.009 . 0.0116
4s : 0.013 0.0166
Other _ 0.031 ' 0.0405
Total 0.895 % 0.004 1M
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Figure 1:

Figure 2:

FIGURE CAPTIONS

The growth of the population versus the number of Monte Carlo
generations using the population estimator (o) and the local energy
estimator (¢) at the triple coalescence point (all three

particles starting at the origin). The o's are shifted one half

generation to the left for clarity.

The ratio of the exact wave function to the B0 wave function (i. e.
an exponential) both normalized as in Eq.(2) at various muon

distances from the fused nuclei.
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Figure 2.



